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ABSTRACT 

 

Actual problems of space science, gasdynamics and 

plasma physics requires the registration of radiative 

heat transfer for more accurate calculation thermal 

characteristics modeling objects. Through the huge 

amount of methods it is possible to distinguish the 

spherical harmonics method (SHM) which is quite 

simple for computer implementation. [1]-[5], [9]. It is 

possible to calculate the volume heat generation and 

radiative flux to the surface using SHM. 

This work is dedicated to resolving the heat transfer 

equation in P1-approximation of SHM in complex 

geometry under assumption of nonscattering media. 

Besides benefits of the P1-approximation of SHM there 

are few of lacks, which were discussed in [1], [2], [4], 

[9]. Among of this lacks one can distinguish the 

unsatisfied accuracy of SHM near boundaries and 

under relative small absorption of radiation. But, 

despite of this lacks, there are weighty arguments of 

applying the P1-approximation of SHM. This is the 

main reason of future investigation of the P1-

approximation of SHM respectively to the number of 

physical mechanic problems. 

 

1. THE GEOMETRY OF THE PROBLEM 

 

1.1 The flat geometry mesh 

 
On fig. 1 the geometry, used for computation transfer 

of high temperature gas radiation within flat layer is 

shown. This type of geometry is chosen because of 

presence of analytical solution of one dimensional heat 

transfer problem along the axis of symmetry far from 

edges. The number of nodes along axis z and r is equal 

to 50 and 250 respectively. The grid, depicted on fig. 1 

is regular, uniform and orthogonal. Such relative grid 

simplicity let us exclude the influence of discretization 

procedure, topology of the mesh and focus on the 

principal difference between the P1-approximation of 

SHM and analytical solution. 

 

 
Fig. 1. Structured grid for calculation radiative heat 

transfer within the flat layer. 

 

1.2 The complex geometry mesh 

 

On fig. 2 the mesh, used for calculating heat transfer 

within the complex geometry is presented. Because of 

axisymmetric problem statement, computations are 

carried out only for the upper half of computational 

domain, restricted with the equation y=0. The number 

of nodes is equal to 141x61 along the spherical 

boundaries and axis of symmetry respectively. The 

mesh refinement in the domain of the most gradients is 

made analytically, for details see [8]. 

 

 
Fig. 2. Structured grid in the neighbourhood of 

spherical body, number of nodes is 141х61 

 

2. GOVERNING SYSTEM OF EQUATIONS 

 



The spectral intensity of radiation satisfies the unsteady 

equation of heat transfer: 
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where t  - time, c - light velocity, ( , )vJ s - spectral 

intensity of radiation, v - the frequency of radiation, s - 

spatial coordinate along the ray, - unit vector 

directions, 
v s - the volume spectral coefficient of 

absorption,  em

vJ s - unit volume spectral radiation 

ability, , , , ',s v v -the spectral scattering 

indicatrix, dependent from frequency and direction. 

The approximation of local thermodynamic 

equilibrium is used for Eq. 1, which means 

that
,

em

v v b vJ s s J T s , where 
,b vJ T s  - 

spectral intensity of black body. The media is 

considered nonscattering, i.e. , 0v s t . Eq. 1 is 

considered to be quasisteady: the time-derivative 

summand 
, ,1 J s t

c t
 has a fictitious sense. This 

assumption is made for scheme established 
realization.  Finally, Eq. 1 can be rewritten as  
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The P1-approximation of SHM concludes in intensity 

of radiation series expansion into linear combination of 

orthogonal Legendre polynomials with the coefficients, 

depend on spatial coordinate. For details see [1]-[3], 

[6]. The integrating over the whole solid angle results 

in governing system of equations: 
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where ,r z  – axis of cylindrical system of coordinates, 

,r zW W  - radiation flux density projections, U - 

volume density of radiation, v - spectral coefficient of 

absorption, The spatial dependence in Eq. 3- 5 is 

omitted due to short.  

Eq. 3-5 is equal to single equation with partial 

derivatives: 

 

,
1

( ) ( )
v v

v v v v v bvr
U U

D D cU cU
r r r z z

  (6) 

 

where / 3v vD c - spectral diffusion coefficient.  

As mentioned above, the structured meshes are used in 

this work because of more rapid convergence of 

iteration process (references) comparing with 

unstructured meshes. in addition, the finite element 

way of discretization is much more simple comparing 

with finite-volume way of  discretization, for example.  

Because of multi-block grid orientation, it is preferable 

to orthgonolize computational domain and mesh for 

simplifying mathematical calculations, for example, 

“stitching” the solution on the domain boundary. For 

this purpose a changing of coordinates is performed. 

The cylindrical coordinates ( , )r z  is changed on 

curvilinear coordinates ( , ) . Jacobean matrix J is not 

equal zero at any point of computational domain. The 

resulting equation in coordinates ( , )  has appearance  
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In Eq. 7 the spectral index near D ,U and is omitted 

for short. 

 

3. BOUNDARY CONDITIONS 

 

For Eq. 1 boundary conditions are formulated 

relatively the intensity of radiation: 

 

0x , 0 1 : 00,J x J  

x H , 1 0 : , HJ x H J , 

 

but, because of postulation the relation between 

volume density of radiation and radiation flux density, 



boundary conditions should be formulated relatively 

this variables. In this work the Marshak boundary 

conditions are used [3]: 
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where - optical thick of medium layer along unit 

boundary normal. For our task optical length 0  is 

considered for boundary, adjacent to spherical body, 

and H  on the boundary, adjacent to unperturbed 

media. 
0J  и 

HJ - external intensity of radiation 

relatively to the computational domain, 
0J =

HJ =0, 

are considered subsequently, so boundary conditions 

transforms to 
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Eq. 8 and 9 have simple physical meaning: the 

radiative flux density to the domain boundary are equal 

diffuse component of radiation. Such type of boundary 

condition is approximate: according to the definition of 

volume density of radiation
4

2
U Jd

c
, i.e. for 

accurate calculation of boundary condition we need 

inextricable radiation intensity function, integrating the 

intensity of radiation function defined only in the half 

of solid angle can lead to inaccuracy of boundary 

condition.  Numerical experiments, carried out in this 

paper, proved the adequately behavior of Eq. 8 and 9. 

 

4. HEAT TRANSFER IN FLAT DOMAIN 

 

One dimensional radiative heat transfer within the flat 

layer can be described with Chandrasekhar’s functions 

[10]. In this work the elongated cylindrical geometry is 

chosen for describing one-dimensional problem (fig. 

3). Neglecting with boundary effects, there is one 

dimensional problem along the axis of symmetry. In 

present work =1 смH , =5 смR . Along the axis of 

symmetry boundary condition has appearance 0
U

r
. 

Boundary conditions 8 and 9 are used for boundaries 

compound with equations 0z  and z H . 

Temperature field is shown on fig. 3. Number of nodes 

is equal to 500x100 along r  and z axis respectively. 

 

 

 
Fig. 3. Temperature distribution within the flat layer 

 

Analytical solution for z-component of radiation 

density flux is described with expression:  
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where 

1

2

0

exp n

n

x
E x d  - Chandrasekhar’s 

functions, 
0

'

z

dz - optical thickness of media along 

z direction,  
0

H

H dz  - full optical thickness.  

 

5. SPECTRAL MODEL OF HEAT TRANSFER 

IN COMPLEX DOMAIN 

 

On the first step of numerical simulation the spectral 

absorption coefficient is considered to be equal 

constant value independently from the spatial 

coordinate and the frequency of radiation. The spectral 

intensity of radiation can be integrated over the whole 

spectral range under this approximation: 4 /bU T , 

where  2 45.67 /erg s cm К  - Stefan-Boltzmann 

constant. Such approximation allows evaluate the 

volume density of radiation and flux density to the 

surface for a short period of time, avoiding the time-

expensive spectral calculation. Further, the term 

integral task of radiative heat transfer, or, more 

shortly, integral task, will be applied for such kind of 

absorption coefficient approximation.  

On the second step the dependence of absorption 

coefficient from pressure, temperature and chemical 

components concentration was taken into account. The 

gas-dynamic and chemical properties were calculated 

with program code NERAT 2D [3], the spectral 

properties were calculated with program code 

ASTEROID [11,12]. Further, the term spectral task of 

radiative heat transfer, or, more shortly, spectral task, 

will be applied for problem with real optical properties. 

The temperature, velocity, pressure fields and 

concentrations of gases mixture component, used for 

calculations in present work are presented on fig. 4-8.    

 



 
Fig. 4. Temperature field, K 

 

 
Fig. 5. Pressure field, atm. 

 

 

 
Fig. 6. Flow field on incident flux, M. 

 

 
Fig. 7. Mass fraction of CO  

 

 

 
Fig. 8. Mass fraction of  CO2. 

 

For a correct description of optical properties, the 

spectral range from low-frequency zone (10
3
 cm

-1
) up 

to high frequency zone (10
5
 cm

-1
) is divided into 90 

spectral subranges, within every subrange the 

absorption coefficient is considered constant. As it was 

mentioned above, the full spectral problem is very 

time-expensive: the integral task has to be solved for 

each spectral group. The code optimization becomes 

crucial point. 

On fig. 9 the maximum value of absorption coefficient 

within each spectral subrange is depicted. The dividing 

the whole spectral range on subranges is uniform. The 

boundaries of each spectral subrange are marked with 

triangles. 

 



 
Fig. 9. The maximum of spectral absorption coefficient 

within each spectral subrange dependent from wave 

number for range 1.5х10
3
-10

5 
cm

-1
. The boundary of 

spectral groups marked with triangles. 

 

Within each spectral subrange the spectral intensity of 

radiation is: 
0

0

, ,

g

b bJ T J T d , where T  - is 

temperature, K, 0 - wave number, h , k  – Planks and 

Stephan-Boltzmann constants respectively. Spectral 

intensity in subrange  0 0/ 2, / 2  is 

equal to
0

, ,g g

g

g b g bU J T d J T , where 

1

g

g

g

d  - the coefficient of absorption 

within definite spectral subrange. The summation over 

all spectral subranges gives the integral volume density 

of radiation:
1

g

N

g

U U . 

 

6. RESULTS 

 

6.1 The heat transfer in the flat layer 

 

In this section the comparing of flux density of 

radiation, calculated through the P1-approximation of 

SHM and analytical solution (Eq. 10) for flat layer (fig. 

3) is made. Three numerical experiments is made: for 

absorption coefficient 10 cm
-1

, 1 cm
-1

,  0.1 

cm
-1

, 0.01 cm
-1

, the appropriate distribution of flux 

density are presented on fig. 10-13.  

At optical thick of radiative layer 10H  (fig. 10) the 

flux density value, predicted by the P1-approximation 

of SHM is in a good agreement with analytical solution 

(the relative difference is approximately 0.5%). While 

decreasing the optical thick the relative difference 

became greater. At 1H
 (fig. 11) the relative 

difference is equal to 23%, at 0.1H
 (fig. 12) - 11%, 

at 0.01H
 (fig. 13) - 13%.  

 

 

Fig. 10. Axial projection of density flux, 2W/cm ,  

=10cm
-1

. The solid curve - P1-approximation of 

SHM, the dashed curve – analytical solution. 

 

 

Fig. 11. Axial projection of density flux, 2W/cm ,  

= 1cm
-1

. The solid curve - P1-approximation of 

SHM, the dashed curve – analytical solution. 



 

Fig. 12 Axial projection of density flux, 2W/cm ,  

= 0.1cm
-1

. The solid curve - P1-approximation of 

SHM, the dashed curve – analytical solution. 

 
 

 

Fig. 13. Axial projection of density flux, 2W/cm ,  

= 0.01cm
-1

. The solid curve - P1-approximation of 

SHM, the dashed curve – analytical solution. 

 

6.2 Heat transfer in complex geometry 

 

Each numerical experiment in integral task for the 

geometry type, depicted on fig. 2 the coefficient of 

absorption is considered to vary in range from 1 cm
-1

 

up to 10
-2

 cm
-1

. The flux density on the surface of 

spherical body, calculated through P1-approximation 

and ray-tracing method (RTM, see [11]) is compared 

on fig. 14-16. The relative difference between SHM 

and RTM becomes greater with absorption coefficient 

decreasing. 

 
Fig. 14. The flux density to the spherical body, solid 

curve – RTM, dashed curve - P1-approximation of 

SHM, = 1cm
-1

.  

 

 
Fig. 15. The flux density to the spherical body, solid 

curve – RTM, dashed curve - P1-approximation of 

SHM, = 0.1cm
-1

.  
 

Taking into account the fact, that relative contribution 

the spectral density flux at small absorption coefficient 

is sufficiently smaller than at optically thick media, one 

may conclude, that “cutting off” spectral groups with 

coefficient of absorption smaller than 0.01 cm
-1

 will 

not bring in great inaccuracy into resulting value of 

density flux. It is possible to see from fig. 9 that there 

is almost no absorption within the range 10
4
 cm

-

1 v 10
5
 cm

-1
. In this work the spectral task of heat 

transfer was performed two numerical experiments: for 

7 spectral groups among of 90 with the absorption 

coefficient greater than 10
-2

 cm
-1 

and for 17 groups 

with the absorption coefficient greater than 10
-3

 cm
-1

. 



 
Fig. 16. The flux density to the spherical body, solid 

curve – RTM, dashed curve - P1-approximation of 

SHM, = 0.01cm
-1

. 

 

All the rest spectral groups have not been taken into 

account. The minimum value of absorption coefficient 

was restricted with value 10
-2

 and 10
-3

 cm
-1 

relatively. 

On fig. 17 the comparable plot for spectral task is 

depicted. The relative difference for the front 

stagnation point is equal 15%, the relative difference 

for the point 50 cm far from front stagnation point is 

60%. Such great difference can be explained small 

values of absorption coefficient near back stagnation 

point. The similar calculation was made for absorption 

coefficient value limitation at 10
-3

 cm
-1 

(fig. 18). The 

relative difference for the front stagnation point now is 

8%, but the difference for the tail part of spherical 

body now is more sufficient.  

 

Fig. 17. The flux density, solid curve is  

P1-approximation of SHM, dashed curve is RTM. The 

limitation for absorption coefficient is 10
-2

 cm
-1

. 

 
Fig. 18. The flux density to spherical body surface, 

solid curve is P1-approximation of SHM, dashed curve 

is RTM. The limitation for absorption coefficient  

is 10
-3

 cm
-1

. 

 

 

7. CONCLUSION 

 

Results of numerical simulation the heat transfer 

equation in two-dimensional axisymmetric geometry 

leads to conclude about peculiarities of application 

sphere for  P1-approximation of SHM for curvilinear 

meshes in complex geometry. 

The performed calculations of radiative density flux 

with the linear temperature distribution in the flat layer 

at different values of the absorption coefficient showed 

relevancy of this approximation in the range of 

absorption coefficient 10-10
-2

 cm
-1

. The maximum of 

relative difference in the mentioned range of 

absorption coefficient did not exceed 23%. 

Also, the integral and spectral calculation for complex 

geometry (the flow over the spherical body) is 

performed. We get the good agreement for integral 

density flux at absorption coefficient 10-10
-1

 cm
-1

. The 

more substantial difference for integral task is observed 

at absorption coefficient 10
-2

 cm
-1

. Comparing this 

result with the calculation for the flat layer at just the 

same absorption coefficient, one may conclude that the 

total difference is provided not only because of 

optically thin medium, but also with the type of 

geometry.  

Taking into account the optical properties of high 

temperature medium was combined with the “cutting 

off” the absorption coefficient with the relatively small 

constant value. The good agreement between flux 

density predicted by P1-approximation and RTM for 

the front stagnation point is obtained. For the back 

stagnation point the more sufficient difference in flux 

density value was observed. It is explained with the 



much thinner optical medium near back stagnation 

point.  

The essential difference in density flux value for back 

stagnation point region is also can be explained with 

the great curvilinearity of the mesh: it is enough to 

remind that at the same value of absorption coefficient 

(10
-2

 cm
-1

) for the flat layer we get quite acceptable 

difference between  P1-approximation and analytical 

solution, see fig. 15. 
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